Level terendah yaitu level digital logic, objek yang menarik di level ini yaitu gates. Setiap gate mempunyai satu atau lebih digital inputs (masukan digital) yang me- representasikan 0 atau 1).
Masukan tersebut akan dihitung dan menjadi output dengan beberapa operasi/fungsi ibarat OR, AND, dst.
Operasi komputer didasarkan pada penyimpanan dan pemrosesan data biner. Elemen penyimpanan (exist pada satu dari dua state) dan circuit sanggup mengoperasikan data biner membentuk banyak sekali fungsi computer
Implementasi elemen storage dan circuit dalam digital logic, khususnya combinational dan sequential circuit.
Boolean Algebra is a Mathematical discipline used to design and analyze the behavior of the digital circuitry in digital computers and other digital systems. Named after George Boole which he is an English mathematician. He proposed basic principles of the algebra in 1854.
Later, Claude Shannon suggested Boolean algebra could be used to solve problems in relay- switching circuit design
Boolean Algebra is a Mathematical discipline used to design and analyze the behavior of the digital circuitry in digital computers and other digital systems. Named after George Boole which he is an English mathematician. He proposed basic principles of the algebra in 1854.
Later, Claude Shannon suggested Boolean algebra could be used to solve problems in relay- switching circuit design
Is a convenient tool :
Analysis
It is an economical way of describing the function of digital circuitry
Design
Given a desired function, Boolean algebra can be applied to develop a simplified implementation of that function
Menggunakan variable dan operasi
- Logic
- A variable may take on the value 1 (TRUE) or 0 (FALSE)
- Basic logical operations are AND, OR, and NOT
AND
- Yields true (binary value 1) if and only if both of its operands are true
- In the absence of parentheses the AND operation takes precedence over the OR operation
- When no ambiguity will occur the AND operation is represented by simple concatenation instead of the dot operator
OR
- Yields true if either or both of its operands are true
NOT
- Inverts the value of its operand
Simbol Operator
Simbol untuk mepresentasikan operasi
- AND = .
- OR = +
- NOT = overbar
Contoh
- A AND B = A . B
- A OR B = A + B
- NOT A = 𝐴
Evaluasi verbal Boolean
- 0 + 0 + 0 + 0 =
- 0 + 0 + 0 + 1 =
- 1 + 1 + 1 + 1 =
- 1.1 + 0.0 + 1 =
- 1.0.0.1 =
- 1.0 + 1.0 + 0.1 + 0.1 =
Contoh
Jika B = 0 dan C = 1; A = 1
- 𝐷 = 𝐴 + (𝐵 . 𝐶) ?
- 𝐷 = (𝐴 + 𝐵 ) . 𝐶 ?
- 𝐷 = 𝐴 + 𝐵 . 𝐵 + 𝐶 ?
- 𝐷 = 𝐵 + 𝐶 + 𝐴. 𝐵 ?
XOR (exclusive –OR) operand logic = 1 kalau dan hanya kalau salah satu operand = 1
NAND : complement (NOT) dari fungsi AND
A NAND B : NOT (A AND B) = AB
A NOR B : NOT (A OR B) = A + B
Contoh
Terapkan teorema De Morgan pada verbal berikut :
( 𝑋𝑌𝑍 )' = ?
Truth Tables / Tabel Kebenaran
Truth Table
Buat Truth Table dari dari fungsi Boolean berikut :
X = AB + C’D
Contoh Persamaan/Fungsi Aljabar Boolean
- X + X’ .Y = (X + X’).(X +Y) = X+Y
- X .(X’+Y) = X.X’ + X.Y = X.Y
- X.Y+ X’.Z+Y.Z = X.Y + X’.Z + Y.Z.(X+X’)
- = X.Y + X’.Z + X.Y.Z + X’.Y.Z
- = X.Y.(1+Z) + X’.Z.(1+Y)
- = X.Y + X’.Z
Manipulasi Aljabar Boolean
Aljabar Boolean merupakan tool berkhasiat untuk menyederhanakan rangkaian digital (circuit digital). Perhatikan persamaan Boolean berikut :
Disederhanakan memakai operasi dasar aljabar boolean
No comments:
Post a Comment